			rigentina anno marchiaid aitean A	Crystal			
	Vaporb	Liquid	Vitreous —180°C	-180°C	-108°C	Assignment®	
RQP	3708 3690 s(\sim 3680) 3675	3310 vs, br	3195 vs, br	{3285 vs 3175 s	3297 vs 3197 s	OH stretching a'	
	time (FC	2752 m, br	2760 m, br	2920 w 2830 w 2772 m	2920 w 2830 w ~2770 m	2×1488° 1488+1405 2×1405	
	2235 vs(2232)	2232 vs	2235 m 2213 s	2230 sh, w 2236 m 2214 s	2236 m	CD_3 asym. stretching a' and a''^d	
R	2147 vw 2008)	2145 w	2135 w	2138 w	~2138 w	2×1075	
Q	2077 s(2094)	2078 s	2075 s	2075 s	∼2074 s	CD_3 sym. stretching a'	
1	2039)		~2020 vw	~2020 vw	~2020 vw	2×1047	
RQP	1983 1966 1947 1947	1962 w	1957 w	{1969 sh, vw 1949 w	1947 w	2×988	
R	1310)		1.1 24.5207	2073 %	3075 6		
QP	1297 vs(1289)	1391 br	1445 s	1488 vs 1405 w	1479 vs 1404 w	OH in-plane bending a''	
7	1145)		1389 s	1354 s	1320 br, m	2×685 ^t	
Q P	1143 1134 1112 vs(1123)	1122 vs	1122 vs	$\begin{cases} 1131 \text{ sh, w} \\ 1121 \text{ vs} \end{cases}$	1118 vs}	CD ₃ sym. bending a'	
	1075 w(10802)	(1000 sh yay	~1106 sh	1106 vw	1104 sh, vw	C ¹³ D ₃ sym. bending	
	10/0 #(1000/)	(1069 w	1066 m	1069 m	1069 m	CD_3 asym. bending a''	
	1047 (1055?)	1020 sh, vw	1026 w	1031 w 1023 w	1029 w	CD3 asym. bending a'	
R Q P	1007 988 966	982 vs	983 vs	{987 sh, w 980 vs	$\xrightarrow{987 \text{ sh, w}}_{981 \text{ vs}}$	CO stretching a'	
	877 m(879)		050 sh ww	∫953 vw	953 vw	CD recking off	
	077 m(077)	000	950 SH, VW	947 vw	947 vw	CD ₃ rocking <i>a</i>	
	858 m(856)	882	895	(902 m	900 vw}	CD_3 rocking a'	
		665 a br	709 1-	823 sh, m (776 s, br	741 s. br)	510+339(?)	
		005 s, or	708 Dr	(685 s	670 s	Off out-of-plane bending	
		a Décina Supra P	~314 w	339 s	332 m	lattice mode	

TABLE III. Infrared spectrum of CD₃OH.ª

Abbreviations are given in Table I.

^b Data in parentheses are those of Noether (see the work cited in footnote 3).

d Sec Table I.

^fRather weak Fermi resonance seems to occur between 2×685 and one of the OH in-plane bending modes.

bands due to the internally asymmetrical modes are probably at 1500 and 1427 cm⁻¹. In the Raman spectra of the liquids the three bands are incompletely resolved. In crystalline CH₃OH the corresponding bands are overrun by the OH bending mode, but in crystalline CH₃OD the three bands due to the three CH₃ bending modes are clearly seen.

There are strong, approximately parallel bands in the vapor spectra of CD₃OH and CD₃OD with Q branches at 1134 and 1135 cm⁻¹, respectively, which are clearly due to the a' CD₃ internally symmetrical bending mode. In confirmation of this the corresponding Raman band in CD₃OH at 1127 cm⁻¹ is polarized. There are two weak bands at somewhat lower frequencies, those in CD₃OD having their central gaps at 1080 cm⁻¹ and 1035 cm⁻¹

and those in CD₃OH being somewhat weaker and less well resolved at 1075 cm⁻¹ and 1047 cm⁻¹. These are probably the two CD₃ internally asymmetrical bending bands. The assignment of the higher frequency to the a'' mode is again rather arbitrary, but gives somewhat better agreement with the product rule. The two bands are not resolved in the Raman spectrum, only one maximum, which is depolarized, occurring at 1070 cm⁻¹. There are two bands in the infrared spectra of solid CH₃OH and CD₃OD, though possible contributions from one of the CD₃ rocking modes (see below) render interpretation uncertain.

The three CH_3 bending bands are not in the same order of frequency as the three CD_3 bending bands. Thus, in CH_3OH and CH_3OD the frequency of the CH_3

INFRARED SPECTRA OF METHANOL

	ALC: NOT OF THE OWNER			Cryst	tal	Vinterne	
	Vapor ^b	Liquid	Vitreous -180°C	-180°C	-108°C	Assignment	
	3684 w(~3680) 2976 2953 vw 2033	3310 w, br	3195 w, br	3193 w 2975 2925}vw	3216	OH stretching (CD3OH) CH stretching (CD2HOD and CDH2OD)	
	2871 vw	1400-1403 2×1406	2710 m	2825 vw		CH stretching (CD ₂ HOD and CDH ₂ OD)	
RQP	2746 2724 s(2725)	2474 vs, br	2384 s, br	{2432 s 2361 s	2432 s 2361 s	OD stretching a'	
	2108)	(2365 sh)	A A A A A A A A A A A A A A A A A A A			(?)	
	2242 2228 vs(2227)	2250 m 2225 m 2215 sh yw	2240 w 2213 m 2190 sh w	2240 m 2212 s 2189 m-w	2248 m 2223 s	CD_3 asym. stretching a' and a'' d	
	2140 vw	2145 w	2170 84, 1	{2150 sh, vw} 2130 sh, vw}		2×1060 or 2×1080°	
RQP	2100 2080 vs(2081)	2082 s	2075 s	2075 s	~2075 s	CD ₃ sym. stretching a'	
r	2005)	national enals of HO		1980 sh, w	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	1116+862(?)	
RQP	1977 1959 w (1966) 1943	~1940 br	1925 w	{1935 w 1920 w	~1920 w	2×983	
RQP	1310 1297 1273 m(1290?)	~1380 vw, br	1382 w	{1420 w 1395 w	1422 w 1395 w	OH bending (CD ₃ OH)!	
	12/0)	antihord more (C	1256 vw	1248 vw	~1255 vw	CD ₂ H rocking (?)	
RQP	1155 1135 1117 vs(1121)	1124 vs	1117 vs	1116 vs	1116 vs	CD_3 sym. bending a'	
	1080±10 w(1073 1060 w(1045?) 1024±10 w(?)	5?) 1097 s 1068 sh, m ~1080(?)	~1100 sh, w 1062 m ~1125(?)	~1080 sh, vw 1064 w 1131 w	~1085 sh, vw 1064 w	CD_3 asym. bending a'' CD_3 asym. bending a' CD_3 rocking and OD in-plane bending	
R	1001)	CDs rocking ave			950 sin, viv 11	a' (Charlena (B)	
RQP RQP	983 vs(987) 962	979 vs	975 vs	968 vs	969 vs	CO stretching a'	
	892 w(?) 856 w(?) 707)	898 w	896 m	895 m	892 m	(?) CD ₃ rocking a"	
	776 753 s(775)	818 m	831 m, br	862 m	857 w	CD_3 rocking and OD in-plane bending a'	
			800 w ∼730 vw	745 w ~630	\sim 755 sh, vw \sim 630	(?) OH out-of-plane bending (CD ₃ OH) 2×336(?)	
		483 s, br	533 s ~300(?)	578 s 495 s 336 vs	556 s 487 s 325.5 s	OD out-of-plane bending lattice mode	

TABLE IV. Infrared spectrum of CD₃OD.

* Abbreviations given in Table I.

^b Data in parentheses are those of Noether (see the work cited in footnote 3).

d See Table I.

e loce raon

^f Doubling in the crystal is probably due to Fermi resonance with 2×705 cm⁻¹.

internally symmetrical bending mode appears to be between those of the two asymmetrical bending modes, whereas in CD₃OH and CD₃OD it appears to be a good deal higher. This is probably caused by interaction of the CH₃ internally symmetrical bending motion with the CO stretching motion. The CO stretching frequency drops from 1034 cm⁻¹ in CH₃OH and 1041 cm⁻¹ in CH₃OD to 988 cm⁻¹ in CD₃OH and 983 cm⁻¹ in CD₃OD, and at the same time the deuteration shift of the CH₃ internally symmetrical bending frequency is only 1.28 instead of the expected 1.36. The isotope shifts are shown diagrammatically in Fig. 6. The apparent inversion of the order of frequency for the two CH₃ and CD₃ internally asymmetrical bending modes is quite uncertain

CH₃ Rocking Modes

There are two CH₃ rocking modes, of species a' and a''. In the absence of interaction of the motions with the motions of other atoms the frequencies are expected to be close together. However, we note that the shift of the OH bending frequency on deuteration is high, being